基于模糊神经网络的供热负荷预测  被引量:1

在线阅读下载全文

作  者:沈晓峰[1] 张子平[1] 吕冬杰 

机构地区:[1]河北工程大学城市建设学院

出  处:《门窗》2016年第5期244-244,共1页Doors & Windows

摘  要:为了克服传统BP神经网络预测精度差,易陷入局部极值的缺陷,提出了模糊神经网络系统。利用模糊粗糙集通过历史负荷数据信息的模糊化替代负荷变化的离散化,快速寻找出样本数据间的连续属性的信息,将其与传统BP神经网络结合组成模糊神经网络对热负荷进行预测。实验结果表明:该模糊神经网络预测结果的相对误差很小不超过2%,在短期负荷预测方面具有的优越性。

关 键 词:供热负荷 模糊神经网络 预测 

分 类 号:TU995[建筑科学—供热、供燃气、通风及空调工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象