检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学软件工程学院,辽宁兴城125105
出 处:《计算机工程与应用》2016年第13期195-200,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61103199);北京市自然科学基金(No.4112052)
摘 要:针对传统混合高斯模型检测运动目标中存在的不足,提出了一种改进的基于混合高斯模型的运动目标检测算法。将改进的混合高斯模型与四帧差分相结合,有效地解决了突变光照的影响并消除了传统帧差法检测目标时容易出现的双影现象,改进的混合高斯模型自适应地调整了高斯模型的分布数量,提高了背景的描述精度。分情况讨论了物体的运动状态并分别设置不同的学习率,改善了对运动缓慢目标的检测效果。实验结果表明结合后的算法能对运动目标进行准确检测,对复杂场景有较好的适应性。Aim at the disadvantages of traditional mixture Gaussian model in moving object detection, an improved movingobject detection method based on mixture Gaussian model is proposed. It solves the problem affected by the illuminationmutations and the traditional frame difference is easily affected by double shadow which combines the improved mixtureGaussian model and four-frame subtraction. The improved mixture Gaussian model adjusts the numbers of the Gaussiandistribution adaptively and improves the accuracy of the background description. This paper discusses the motion state ofthe object and different learning rates are set to improve the effect of slow-moving object detection. Experimental resultsshow that the combined algorithm can detect moving object accurately and has better adaptability in complex scenes.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222