检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《自动化学报》2016年第6期931-942,共12页Acta Automatica Sinica
基 金:国家自然科学基金(61305133;61573285)资助~~
摘 要:目前大部分受限玻尔兹曼机(Restricted Boltzmann machines,RBMs)训练算法都是以多步Gibbs采样为基础的采样算法.本文针对多步Gibbs采样过程中出现的采样发散和训练速度过慢的问题,首先,对问题进行实验描述,给出了问题的具体形式;然后,从马尔科夫采样的角度对多步Gibbs采样的收敛性质进行了理论分析,证明了多步Gibbs采样在受限玻尔兹曼机训练初期较差的收敛性质是造成采样发散和训练速度过慢的主要原因;最后,提出了动态Gibbs采样算法,给出了对比仿真实验.实验结果表明,动态Gibbs采样算法可以有效地克服采样发散的问题,并且能够以微小的运行时间为代价获得更高的训练精度.Currently, most algorithms for training restricted Boltzmann machines(RBMs) are based on the multi-step Gibbs sampling. This article focuses on the problems of sampling divergence and the low training speed associated with the multi-step Gibbs sampling process. Firstly, these problems are illustrated and described by experiments. Then,the convergence property of the Gibbs sampling procedure is theoretically analyzed from the prospective of the Markov sampling. It is proved that the poor convergence property of the multi-step Gibbs sampling is the main cause of the sampling divergence and the low training speed when training an RBM. Furthermore, a new dynamic Gibbs sampling algorithm is proposed and its simulation results are given. It has been demonstrated that the dynamic Gibbs sampling algorithm can effectively tackle the issue of sampling divergence and can achieve a higher training accuracy at a reasonable expense of computation time.
关 键 词:受限玻尔兹曼机 GIBBS采样 采样算法 马尔科夫理论
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.109.3