检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子测量技术》2016年第5期66-69,共4页Electronic Measurement Technology
摘 要:针对大数据应用中用户协同过滤推荐系统存在的扩展性与稀疏性问题,提出融合奇异值分解与聚类的SBKCF算法。算法采用改进的皮尔逊相似度度量用户间的相似度,通过对降维后的用户进行聚类,并遍历用户的最临近簇生成推荐列表。实验结果表明,提出的算法能够有效完成个性化推荐,在一定程度上解决用户协同过滤推荐系统中存在的扩展性与稀疏性问题。In this paper,a fusion of singular value decomposition and clustering algorithm named SVD biKmeans collaborative filtering(SBK-CF)is proposed,in order to solve the scalability and sparsity problems in user based collaborative filtering system.The algorithm adopts improved Pearson similarity metric formula to measure similarity between users,and clustering those users which have been dimension reducted,then generates the recommendation list through the nearest neighbor cluster of users.Experimental results show that the proposed algorithm can effectively accomplish the mission of personalized recommendation and solve the scalability and sparsity problems in user-based collaborative filtering system.
分 类 号:TN82[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117