检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东电子职业技术学院计算机科学系,山东济南250200 [2]泰华智慧产业集团股份有限公司博士后工作站,山东济南250101 [3]山东建筑大学计算机学院,山东济南250101
出 处:《山东建筑大学学报》2016年第2期177-182,共6页Journal of Shandong Jianzhu University
基 金:山东省自然科学基金(ZR2013FL024);山东建筑大学博士科研基金(XNBS1261)
摘 要:能够实现视觉导航的自主移动机器人具有很好的应用前景,而场景变化、目标运动、障碍、遮档等是自主机器人视觉导航过程经常遇到的问题,结合外观特征和深度信息的目标检测和跟踪算法是提高自主机器人对目标及环境变化适应能力的重要途径。文章结合人类在跟踪和定位目标时既利用颜色、亮度、形状、纹理等外观特征,又利用物体间距离、深度信息的特点,提出了结合外观特征和深度信息的目标跟踪算法并通过实验验证了该算法对视角、运动、遮挡等因素所引起变化的适应能力,且利用定量的方法对算法的性能进行了评价。Challenges that robot faces in vision-based navigation include scene change, appearance change, obstacle, occlusion etc. Imitating human vision perception, an object detection and tracking algorithm that combines appearance feature and depth information is proposed. First, RGB image and depth information are captured by the Kinect camera that works as the vision system of robot. Then, an appearance model is created with features extracted from RGB image. A motion model is created on plan-view map produced from depth information and camera parameters, and the estimation of object position and scale is performed on the motion model. Finally, appearance features are combined with position and scale information to track the target. Experimental result show the robustness of our object detection and tracking method to appearance changes arose from view, motion and occlusion factors. It also shows that the object detection efficiency and object tracking accuracy are improved greatly compared with the method that only employ the appearance features.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117