检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杏建军[1] 于洋[1] 王祎[1] 郑黎明[1] 陈子昂[1]
出 处:《国防科技大学学报》2016年第3期100-106,共7页Journal of National University of Defense Technology
基 金:中国博士后基金资助项目(20080440217;200902666)
摘 要:为解决编队卫星在近地空间复杂力学环境特别是地球非球形摄动作用下构型易发散的问题,给出一种基于改进线性二次型调节器的编队卫星构型控制方法。该方法先估计近地空间编队卫星构型设计时由未建模摄动力引起的误差最大有界范围,再利用误差最大有界范围的二范数改进经典的线性二次型调节器控制方法,提高经典线性二次型调节器控制器在控制编队卫星构型时的鲁棒性。为评价改进方法的有效性,给出了一种鲁棒性强弱的量化评判标准。仿真结果表明,改进的方法可以大大提高经典线性二次型调节器方法的鲁棒性,增强编队卫星控制方法对各种不确定项的抵御能力。In order to solve the configuration divergence problems of formation satellites under the complex mechanics environment in nearearth space,especially under the non-spherical perturbation influence,a formation satellites configuration control method based on improved LQR( linear quadratic regulator) was presented. The method estimated the maximum bounded range of error caused by an un-modeled perturbative force in near-earth space formation satellites configuration design,then used the 2-norm of maximum bounded range to improve the classical LQR method and improved the robustness of classical LQR controller in controlling formation satellites configuration. In order to evaluate the effectiveness of improved method,a quantitative criterion for judging the robustness was given. The simulation results show that the improved method can greatly improve the robustness of classical LQR method and improve the resistance ability of formation satellites control methods for all kinds of uncertainty.
分 类 号:V412.41[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229