检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与现代化》2016年第7期28-32,共5页Computer and Modernization
基 金:国家自然科学基金资助项目(61402395);江苏省自然科学基金资助项目(BK20140492)
摘 要:协同过滤算法利用大量数据,通过研究用户的喜好可以为用户推荐其感兴趣的项目,在电子商务得到了广泛应用。然而,此类算法在面临扩展性、数据稀疏性和冷启动等问题时,出现推荐准确度下降和推荐效率偏低的问题。针对这些问题,本文引入用户属性相似度的概念,使用K-means聚类算法将用户划分到恰当用户簇,预测用户对项目的评分。然后,通过混合加权的方法,将基于用户属性的K均值聚类的推荐算法与基于项目的协同过滤算法相融合,提出综合用户属性的协同过滤算法。通过在Movie Lens数据集上进行实验,结果表明本文所提出的算法具有可扩展性,同时在一定程度上缓解了冷启动问题,提高了推荐算法的预测准确度。Collaborative filtering algorithm , which can recommend the items appeal to users from mass of data through studying the user ’s preferences is widely used in electronic commerce .However , collaborative filtering algorithm suffers from decreasing accuracy and inefficiency in scalability , data sparsity , and cold start .In order to solve there problems , the concept of user attrib-ute similarity is introduced in this paper , and the user can be divided into appropriate user clusters to predict the user ’ s ratings for a project by using K-means clustering algorithm .Furthermore, through fusing the recommendation algorithm based on user at-tributes and the collaborative filtering algorithms based on the project by using the method of mixed weights , a collaborative filte-ring algorithm synthesizing the attributes of user is proposed .Through experiment by using MovieLens data sets , we verify that the proposed algorithm has extensibility .Simultaneously , it can ease cold start problem and improve the prediction accuracy of recom-mendation algorithm in some degree .
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249