基于置信度的深度图融合  被引量:2

Fusion of Depth Maps with Confidence of Points

在线阅读下载全文

作  者:刘怡光[1] 董鹏飞[1] 李杰[1] 都双丽 

机构地区:[1]四川大学计算机学院,四川成都610065

出  处:《四川大学学报(工程科学版)》2016年第4期101-106,共6页Journal of Sichuan University (Engineering Science Edition)

基  金:国家自然科学基金资助项目(61571313);四川省科技厅资助项目(2014HH0048)

摘  要:由于匹配信息弱或噪声影响,深度计算精度难以保证,故深度图融合是多目立体视觉3维重建中的关键部分。为此,提出一种基于置信度的抗噪融合算法。该方法首先对每幅深度图进行修正,利用一致性检测剔除大多数错误点并填补某些空洞。其次,通过保留那些在自身邻域内具有最高置信度的3维点以删除冗余。最后,将深度图反投影到3维空间,采用迭代最小二乘法进一步优化3维点并剔除离群点。通过在标准测试数据集上与其他算法比较,验证了该方法的有效性。Due to the weakness of match information and influence of noise, the calculation precision of depth cannot be guaranteed. Therefore the fusion of multiple depth maps is a typical technique for multi-view stereo ( MVS ) reconstruction. An antinoise fusion method that took advantage of the confidence of 3D points was introduced. This method performed a refinement process on every depth map to enforce consistency over its neighbors, which could remove most errors and fill many holes simultaneously. After: refinement, it deleted redundancies of every point by retaining the point that its confidence was maximal in its neighbors. Finally, it obtained a point cloud by merging all depth maps and used an iterative least square algorithm to further eliminate the noise points. The quality perform- ance of the proposed method was evaluated on several data sets and compared with other algorithm.

关 键 词:多目立体视觉 3维重建 深度图融合 置信度 迭代最小二乘法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象