检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱健[1] 周孝信[1] 于海承 严剑峰[1] 牛琳琳[1] 于之虹[1] 田芳[1]
机构地区:[1]中国电力科学研究院,北京市海淀区100192 [2]华北电力设计院有限公司,北京市西城区100120
出 处:《中国电机工程学报》2016年第14期3699-3706,共8页Proceedings of the CSEE
基 金:国家自然科学基金项目(61471328);国家电网公司科技项目(XT71-14-04)~~
摘 要:为提高发电机动态参数辨识的准确性,提出一种基于电网动态特性的发电机主导参数辨识方法。首先,根据实测量对发电机进行解耦,构建了包含动态参数的同步发电机的离散非线性状态空间模型,据此给出了参数核平滑算法(kernel smoothing,KS)和祖先采样粒子吉布斯算法(particle Gibbs with ancestor sampling,PGAS),并将两种算法结合得到KS-PGAS算法;然后,基于Morris筛选方法,使用灵敏度因子判别动态参数变化对输出的影响程度,并筛选出第一摆最大功率与阻尼比两个特征量相对应的主导参数;最后,使用KS-PGAS算法先对第一摆最大功率对应的主导参数修正,再利用修正后的主导参数对阻尼比对应的主导参数进行修正。仿真结果证明了所提算法的有效性和优越性。To improve the accuracy of dynamic parameters of generator, a new methodology for generator dominant parameter identification based on dynamic characteristics of power grid was presented. Firstly, the decoupling decomposition of the generator was carried out according to the real measurement. The nonlinear discrete state space model of the synchronous generator was constructed which contains dynamic parameters. In addition, Kernel smoothing (KS) and Gibbs with ancestor sampling particle (PGAS) were given, and the two algorithms were combined to obtain the KS-PGAS algorithm. Furthermore, the influence degree of the dynamic parameter variation based on the Morris filter method was selected by using the sensitivity factors. The dominant parameters were selected by the two characteristic parameters which were the maximum amplitude and the damping ratio. Finally, using the KS-PGAS algorithm, the dominant parameters of the maximum amplitude were identified, and then the dominant parameters of the damping ratio were identified based on the first identified parameter. Simulation results demonstrate the effectiveness and superiority of the proposed algorithm.
关 键 词:同步发电机 参数辨识 灵敏度 核平滑 祖先采样粒子吉布斯算法
分 类 号:TM74[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43