梅尔频率倒谱耦合神经网络的焊接缺陷检测  

Welding defect detection algorithm based on Mel-frequency cepstral coupling neural networks

在线阅读下载全文

作  者:金晖[1] 金传伟[2] 刘俊勇[3] 刘利民[2,3] 刘念[3] 

机构地区:[1]广州大学软件学院,广东广州510990 [2]广东石油化工学院计算机与电子信息学院,广东茂名525000 [3]四川大学电气信息学院,四川成都610065

出  处:《计算机工程与设计》2016年第7期1911-1915,共5页Computer Engineering and Design

基  金:国家863高技术研究发展计划基金项目(2014AA051901);国家自然科学基金项目(51377111)

摘  要:当前焊接图像缺陷检测技术因依赖焊接几何特征缺陷,对微小缺陷中黑暗边缘的噪声较为敏感,导致其定位精度不佳,为此提出一种梅尔频率倒谱耦合神经网络特征匹配的焊接缺陷检测算法。利用DCT(discrete cosine transform)与Zigzag机制,将焊接图像排列成1D信号数组;将1D信号分割为多个帧,构造窗口函数,增强相邻帧之间的连续性,引入倒谱技术,查询1D信号的稳定特性,提取其梅尔频率倒谱系数;定义两个正交多项式,建立多项式系数计算模型,提取多项式系数。基于神经网络训练,对提取特征与数据库特征进行匹配,完成缺陷检测。实验结果表明,与当前焊接缺陷检测技术相比,该算法的定位精度高达90%,鲁棒性更强,不受噪声影响。To solve the problem of low location accuracy of weld defects caused by depending on welding geometrical characteris-tic flaw and sensitivity to the noise of the dark edge in the micro-defect of current welding defect detection algorithm,the welding defect detection algorithm based on Mel-frequency cepstral coupling neural networks feature matching was proposed.The welding image was transformed into 1 D signal array using the DCT and Zigzag mechanism.The window function was constructed to enhance the continuity between the adjacent frames by dividing the 1D signal into multiple frames,and also the Mel-frequency coefficients were extracted by introducing cepstral technology to query the stability of 1 D signal;the polynomial coefficient model was established by defining two orthogonal polynomials to extract polynomial coefficients.The detection of the defects was accomplished based on the training of neural network to match feature extraction feature and database feature.Experimental results show that,compared with the current welding defect detection technology,this algorithm has higher positioning accuracy that reaches 98.62%,and its robustness is stronger without affected by the noise.

关 键 词:焊接图像 缺陷检测 梅尔频率倒谱 神经网络 窗口函数 多项式系数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象