检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹莉[1] 唐玲[1] 吴浩[1] 高祥[2] 乐英高[3]
机构地区:[1]四川理工学院自动化与电子信息学院,四川自贡643000 [2]四川理工学院机械工程学院,四川自贡643000 [3]东南大学仪器科学与工程学院,江苏南京210096
出 处:《机床与液压》2016年第13期184-190,共7页Machine Tool & Hydraulics
基 金:企业信息化与物联网测控技术四川省高校重点实验室项目(2013WYJ03;2013WYY05;2013WZY01;2014WYJ04);酿酒生物技术重点实验室(NJ2013-11);四川省智慧旅游研究基地(ZHZ13-02);四川理工学院科研基金项目(2014KY03)
摘 要:针对BP神经网络在数控机床故障预测中出现的收敛速度慢和训练容易陷入局部极值问题,提出一种基于人工免疫算法优化BP神经网络(IMBP)的数据机床故障诊断算法。介绍了常见的数控机床故障类型和分类,阐述了人工免疫算法和BP神经网络以及人工免疫优化BP神经网络算法的工作流程。利用免疫算法的全局搜索性能先对神经网络权值和阈值进行全局优化,加快了BP算法训练过程的收敛速度,减少训练过程所需要的时间。通过仿真性能测试分析,结果表明:与BP、GABP和IMBP 3种算法对比,比BP神经网络算法的数控机床故障预测诊断提高了18.3%,比GABP神经网络算法提高了12.05%,提高了数控机床故障诊断精度。Aiming at the problems of easy to fall into local extremism in training and slow convergence speed appeared during computer numerical control (CNC) faults forecasting in BP neural network, an optimizing BP neural network method (IMBP) of CNC machine tool fault diagnosis based on artificial immune algorithm was proposed.The common types and classification of CNC machine tool faults were introduced, and the workflow was described of the artificial immune algorithm, the BP neural network, the optimized BP neural network based on artificial immune algorithm.By using the global search capability of immune algorithm to global optimize the weights of neural network and threshold values, the training process and the convergence speed of BP algorithm were quicken up, and the time in need of training process was reduced.Through the analysis of performance and simulation test, compared with three al-gorithms of BP, GABP and IMBP, the results show that the fault diagnosis forecasting of CNC machine tool is improved by 18.3%as compared to BP, and 12.05%as compared to GABP, which improve the accuracy of fault diagnosis of CNC machine tool.
关 键 词:数控机床 故障诊断 BP 神经网络 人工免疫算法 免疫神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.223