检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学移动通信技术重庆市重点实验室,重庆400065
出 处:《电讯技术》2016年第7期717-723,共7页Telecommunication Engineering
基 金:国家自然科学基金青年科学基金资助项目(61302106);河北省自然科学基金资助项目(F2014502029);中央高校基本科研业务费专项资金资助项目(2014MS100)~~
摘 要:针对现有的高光谱图像压缩感知重构算法对图像的空谱特性利用不够充分,导致重构图像质量不够高的问题,提出了一种高光谱图像变投影率分块压缩感知结合优化谱间预测重构方案。编码端以频段聚类方式将高光谱图像的所有频段分成参考频段和普通频段,对不同频段单独采用不同精度分块压缩感知以获取高光谱数据。在解码端,参考频段直接采用稀疏度自适应匹配追踪(SAMP)算法重构,对于普通频段,则设计了一种优化谱间预测结合SAMP算法的新模型进行重构:首先通过重构的参考频段双向预测普通频段,并对其进行压缩投影,然后计算预测前后普通频段投影值的残差,最后利用SAMP算法重构该残差,以此修正预测值。实验表明,相比同类算法,该算法充分考虑了高光谱图像的空谱特性,有效改善了重构图像质量,且编码复杂度低,易于硬件实现。The existing hyperspectral image compressed sensing reconstruction algorithm can not fully utilize the spatial-spectral characteristic of image so that the quality of the reconstructed image is not high enough. For this problem,a new compression scheme for hyperspectral images is proposed which is based on variable projection rate sub block compressive sensing and reconstruction of optimized inter spectral predic-tion. At the encoder,all bands of the hyperspectral image is divided into some reference bands and common bands by band clustering,different bands are used to separate the compressed sensing with different preci-sion in order to obtain hyperspectral data. At the decoder, the reference band is reconstructed by using sparsity adaptive matching pursuit(SAMP) algorithm,and for reconstruction of the common band,a new model of optimized inter spectral prediction combined with SAMP algorithm is designed:firstly,the common band is predicted by means of the reconstructed reference band,and it is compressed and projected,then the residual error of the projection value of prediction before and after is calculated for the common band, finally,the SAMP algorithm is used to reconstruct the residual error,which is used to correct the prediction value. Experimental results show that compared with similar algorithms,the proposed algorithm fully consid-ers the spatial-spectral characteristics of hyperspectral images, effectively improves the quality of recon-structed image,and the complexity of encoding is low,and the hardware implementation is easy.
关 键 词:高光谱图像 分块压缩感知 频段聚类 优化谱间预测 稀疏度自适应匹配追踪
分 类 号:TN911.73[电子电信—通信与信息系统] TP751.1[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124