检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘小波[1] 崔桂华[1] 李长军[1] 钱祥忠[1] 严旭[1]
机构地区:[1]温州大学物理与电子信息工程学院,温州325035
出 处:《计算机系统应用》2016年第8期29-34,共6页Computer Systems & Applications
基 金:国家自然科学基金(61501331;61178053;61575090)
摘 要:为了比较不同的人工神经网络算法识别人民币序列号的性能,研究了离散Hopfield神经网络、BP神经网络、PNN神经网络、GRNN神经网络、SVM神经网络等五种算法的训练耗时、识别速度、识别率和抗噪声能力.研究结果表明,在五种算法中BP算法的综合表现最差,其次为SVM和Hopfield算法,而PNN和GRNN算法表现最好,不仅识别率最高、训练和识别时间最短,而且具有较强的抗噪声能力.To investigate the performance of different neural network algorithms in identifying serial number of RMB banknote, the training speed, recognizing speed and rate, and ability of anti-noise of five neural network algorithms, including the discrete Hopfield neural network, BP neural network, PNN neural network, GRNN neural network and SVM neural network, are studied. The simulation results show that amongst the five algorithms, BP performs worst, followed by SVM and Hopfield, with PNN and GRNN performs best, not only gives the higher recognition rate, shorter training and recognition time, but also is more robust to noise.
关 键 词:神经网络 字符识别 HOPFIELD BP PNN GRNN SVM
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28