检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机与现代化》2016年第8期32-35,共4页Computer and Modernization
基 金:西北工业大学基础研究基金资助项目(JC201273)
摘 要:现有反k邻域的流数据离群点挖掘算法存在一些不足之处,即需要遍历每个数据对象,计算复杂度较高,稳定性较差。为了解决这些问题,本文提出一种改进的基于反k近邻的离群点检测算法OL-ORND。该算法采用细胞邻域思想,加入伪反k邻域点概念(反k邻域为空集的点对象),增加了算法的严密性,从而大大提高了算法的效率和准确率。实验表明,算法具有较好的性能。The existing stream data outliers mining algorithms based on the reverse k neighbors need to traverse each data object,so the computational complexity is higher and the stability is lower. In order to solve these problems,this paper puts forward an improved outliers detection algorithm based on reverse k nearest neighbors named OL-ORND. Using the idea of cell neighbors,adding the false k reverse neighbors object concept that does not belong to the reverse k neighborhood. So that it can improve the efficiency and accuracy of the algorithm. Through the experiment,we can see that the algorithm has good performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31