检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学计算机软件新技术国家重点实验室,南京210023
出 处:《南京大学学报(自然科学版)》2016年第4期762-770,共9页Journal of Nanjing University(Natural Science)
基 金:国家自然科学基金(61273257;61321491);江苏省六大人才高峰计划(2013-XXRJ-018)
摘 要:用单一特征训练跟踪模型进行跟踪鲁棒性较差,为解决这一问题,提出一种多特征表示的混合模型跟踪方法,将生成跟踪模型与判别跟踪模型结合.在生成模型中,利用金字塔结构计算基于颜色的直方图特征表示并以此来计算目标和候选之间的匹配度;判别模型则采用由灰度特征,HOG特征和LBP特征融合训练得到的SVM分类器来判别候选是否为跟踪目标,接着将匹配度和分类结果结合产生对候选的评估,最终评估最高的候选作为跟踪结果同时也用来更新判别模型的训练集.在CVPR2013跟踪数据集上的实验结果表明,该方法能有效克服局部遮挡和背景干扰等问题,实现在复杂背景下的目标跟踪.In this work,we focus on short-term single object tracking,which is the most general type of tracking problems.Numerous significant trackers have been proposed over the past few decades.As we can see from these trackers,using a single type of feature to train the tracking model is a drawback,which usually leads to poor robustness in object tracking.On the other hand,the tracking result of a single tracker can sometimes be very unstable due to the complication of video sequences.Aiming at addressing these problems,we propose a collaborative tracking model fusing hybrid features in this paper.A generative model,which uses color-based features to compute the matching scores between target object and candidates,is combined with a discriminative model,which trains SVM with gray-scale,HOG and LBP features to classify the candidates as target or non-target objects.A spatial pyramid model is adopted in the feature calculation process of the generative model for a better description of the target and candidates.Then,the matching score and classification score are fused to rank the candidates.All the candidates are produced under the particle filter framework.The top-ranked candidate is regarded as the target object and used to update the training set for discriminative model as well.Besides,different update scheme and frequen-cy are used for the two parts of the collaborative model.The ensemble does not impair the performance of the tracking precision but slightly outperform the single model.Finally,we compare our results with other trackers along with some analysis.The experimental results on visual tracking benchmark CVPR2013 demonstrate that our approach is effective for partial occlusion and background clutter in tracking,thus realizes desirable tracking performance under complex conditions.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.21