检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李敏[1,2,3,4] 高兆银[1,2,3,4] 朱迎迎[5] 苏增建[5] 陈亮[5] 郑淑英[1] 张正科[6] 胡美姣[1,2,3,4]
机构地区:[1]中国热带农业科学院环境与植物保护研究所,海南海口571101 [2]农业部热带作物有害生物综合治理重点实验室,海南海口571101 [3]农业部热带农林有害生物入侵监测与控制重点开放实验室,海南海口571101 [4]海南省热带农业有害生物监测与控制重点实验室,海南海口571101 [5]海南大学环境与植物保护学院,海南海口570228 [6]海南大学食品学院,海南海口570228
出 处:《热带作物学报》2016年第8期1553-1557,共5页Chinese Journal of Tropical Crops
基 金:海南省自然科学基金(No.314102);公益性芒果行业科研专项经费项目(No.201203092-2);中央级公益性科研院所基本科研业务费专项(No.2011hzs1J027;2011hzs1J004;2012hzs1J011;2013hzs1J012)
摘 要:以"贵妃"芒果为试材,利用电子鼻检测果实气味响应值,同时测定果实的糖酸度,采用偏最小二乘法(PLS)和BP神经网络建立了基于电子鼻的可溶性固形物、可滴定酸的品质预测模型。两种方法构建的可溶性固形物含量预测模型的建模集相关系数R均大于93%,可滴定酸测模型的建模集相关系数R均大于91%。其中,BP神经网络建模集的相关系数R均略高于PLS,建模均方均根误差(RMSEM)也较低。而预测集相关系数R和预测均方根误差(RMSEP)与PLS的相当或略低,BP神经网络模型对芒果糖酸度预测准确性略好于PLS。结果表明,PLS和BP神经网络模型的预测性能均较好,利用电子鼻技术对芒果品质进行无损伤检测是可行的。In this study, the odor response value of 'Guifei' mango fruit was detected using an electronic nose (model PEN3), meanwhile the soluble solids content (SSC) and titratable acidity (TA) were measured by traditional assays. Based on the data of odor response value, SSC and TA obtained by tests, the quality prediction models of SSC and TA by partial least squares (PI.S)and back propagation neural network (BPNN) modeling were established, respectively. The results showed that the correlation coefficient R for SSC prediction model structured by both PLS and BPNN was higher than 93%, while model correlation coefficient R for TA prediction model was higher than 91% by both PLS and BPNN. Comparatively, the correlation coefficients R by BPNN were slightly higher than those by PLS, and the root mean square error of model (RMSEM) by BPNN was louver than that by PLS. In addition, the correlation coefficient R of prediction set and root mean square error of prediction (RMSEP) by BPNN were slightly less than or similar to those by PLC, suggesting that the prediction accuracy by BPNN model for sugar and acidity in mango fruit was slightly better than that by PLS. The present findings indicate that non-destructive detection by electronic nose in combination with BPNN and PLS modeling for predicting SSC and TA of mango is a feasible and promising approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31