检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜海燕[1,2] 刘昊天[1] 舒欣[1] 徐彦[1] 伍艳莲[1,2] 郭小清[1]
机构地区:[1]南京农业大学信息科技学院,江苏南京210095 [2]国家信息农业工程技术中心,江苏南京210095
出 处:《信息与控制》2016年第4期463-470,478,共9页Information and Control
基 金:国家自然科学基金资助项目(30971697;61403205);国家863计划资助项目(2013AA100404);江苏省农业科技自主创新资金(CX(16)1039)
摘 要:针对多标记迁移学习中源领域与目标领域的特征分布差异会导致源领域数据无法被目标领域利用的问题,提出了一种基于最大均值差异的多标记迁移学习算法(Multi-Label Transfer Learning via Maximum mean discrepancy,M-MLTL),算法通过分解关系矩阵构造共享子空间,并采用最大均值差异(maximum mean discrepancy)作为评价指标,最小化子空间特征的分布差异,从而使源领域与目标领域的特征分布尽可能相似.多标记图像分类实验的结果表明,新算法比同类算法有更高的精度和计算效率.Due to the different distribution of features between the source and target domains in a multi-label transfer learning problem, source domain data cannot exert any effect. To resolve this problem, here we propose novel muhi-label transfer learning via the maximum mean discrepancy. The proposed algorithm decomposes a relational matrix to learn a common subspace. Furthermore, we incorporate the empirical maximum mean discrepancy into the objective function of matrix factorization to minimize the probability distance between different domains. Experimental results from multi-label classification demonstrate that the proposed approach achieves better performance than other similar algorithms in terms of accuracy and efficiency.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219