机构地区:[1]State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 China [2]Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia [3]University of the Chinese Academy of Sciences, Beijing 100049, China [4]Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
出 处:《Protein & Cell》2016年第9期624-637,共14页蛋白质与细胞(英文版)
摘 要:Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mecha-nisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (〈200 nT), produced by a magnetic field shielding chamber, pro- motes the proliferation of neural progenitor/stem cells (NPCslNSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCslNSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multi- potency of the NSs were maintalned, as HMF-exposed NSs were posltlve for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocytelglial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells In the subventrlcular zone. These flndlngs indicate that continuous HMF-exposure increases the proliferation of NPCslNSCs, In vitro and in vlvo. HMF-dlsturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio.HMF response.Living organisms are exposed to the geomagnetic field (GMF) throughout their lifespan. Elimination of the GMF, resulting in a hypogeomagnetic field (HMF), leads to central nervous system dysfunction and abnormal development in animals. However, the cellular mecha-nisms underlying these effects have not been identified so far. Here, we show that exposure to an HMF (〈200 nT), produced by a magnetic field shielding chamber, pro- motes the proliferation of neural progenitor/stem cells (NPCslNSCs) from C57BL/6 mice. Following seven-day HMF-exposure, the primary neurospheres (NSs) were significantly larger in size, and twice more NPCslNSCs were harvested from neonatal NSs, when compared to the GMF controls. The self-renewal capacity and multi- potency of the NSs were maintalned, as HMF-exposed NSs were posltlve for NSC markers (Nestin and Sox2), and could differentiate into neurons and astrocytelglial cells and be passaged continuously. In addition, adult mice exposed to the HMF for one month were observed to have a greater number of proliferative cells In the subventrlcular zone. These flndlngs indicate that continuous HMF-exposure increases the proliferation of NPCslNSCs, In vitro and in vlvo. HMF-dlsturbed NPCs/NSCs production probably affects brain development and function, which provides a novel clue for elucidating the cellular mechanisms of the bio.HMF response.
关 键 词:hypomagnetic field neural progenitor/stemcells NEUROSPHERE PROLIFERATION STERNNESS MULTIPOTENCY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...