检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军工程大学航空航天工程学院 [2]中国人民解放军95507
出 处:《计算机仿真》2016年第9期137-141,共5页Computer Simulation
基 金:国家自然科学基金(51506221);陕西省自然科学基础研究计划青年人才项目(2015JQ5179)
摘 要:当航空发动机控制系统传感器故障时,为保证发动机正常工作,需进行故障诊断与故障隔离,并实现重构控制。为了提高传感器故障重构控制的准确性,提出一种采用自适应模拟退火遗传神经网络(ASAGANN)的传感器重构方法。为能准确、及时发现智能传感器故障,采用序贯概率比阈值判别法对故障进行检测;利用改进的神经网络对发动机试车过程进行辨识,建立高精度的传感器正常工作模型,提高了故障重构的准确性;通过三种传感器不同故障的数值仿真表明,上述方法可以实现对传感器故障的准确检测,并完成对传感器的故障重构控制,证明故障重构方法有效。When faults occur in the sensors of aero-engine control system, the fault diagnosis and isolation progress should be conducted to ensure the stable operation of the closed-loop system, and the reconstruction control is desired to be achieved finally. A sensor fault reconstruction method based on adaptive simulated annealing genetic algorithm neural network (ASAGANN) was proposed to promote the accuracy of the fault reconstruction control. To monitor the sensor faults accurately and timely, a sequential probability ratio diseriminance method was utilized for fault detection. The improved neural network was employed to identify the hot-firing test progress, and the high precision normal working model was established, which can boost the accuracy of fault reconstruction. The numerical simulation was carried out with three types of sensors and with different faults. The results show that the proposed method can detect the sensor faults accurately. And the ideal reconstruction control effect can be achieved, which verifies the effectiveness of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117