具有比率依赖型功能性反应的捕食脉冲系统的持久性(英文)  

Permanence of Predator-Prey Impulsive System with Ratio-Dependent Type Functional Response

在线阅读下载全文

作  者:杨徐昕[1] 王卫兵[2] 申建华[3] 

机构地区:[1]湖南第一师范学院数学系,湖南长沙410205 [2]湖南科技大学数学系,湖南湘潭411201 [3]杭州师范大学数学系,浙江杭州310036

出  处:《生物数学学报》2016年第3期291-301,共11页Journal of Biomathematics

基  金:supported by the NNSF of China(11571088);Hunan Provincial Natural Science Foundation of China(14JJ7083);a Key Project Supported by Scientific Research Fund of Hunan Provincial Education Department(14A028);supported by Scientific Research Fund of Hunan Provincial Education Department(14C0253);the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

摘  要:本文基于经典的阶段结构模型和Lotka-Volterra捕食模型,提出和研究了具有比率依赖型功能性反应模式的脉冲非自治两维时滞微分方程的周期性释放天敌在固定时刻对害虫控制的过程。得到了害虫灭绝周期解的全局吸引性和依赖于时滞和脉冲的人口模型持久性的条件.In this paper,based on the classical stage-structured model and LotkaVolterra predator-prey model,an impulsive nonautonomous two dimensional delayed differential equations with ratio-dependent type functional response to mode the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated.Conditions are obtained for global attractivity of the "pest-extinction" periodic solution and permanence of the population of the model depend on time delay and impulses.

关 键 词:捕食系统 脉冲微分方程 比率依赖型功能性反应 持久性 

分 类 号:Q141[生物学—生态学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象