归一化互相关系数与迭代最近曲面片点云配准方法  被引量:4

Point Cloud Registration Method of Normalized Cross-correlation Coefficient and Iterative Closest Surface

在线阅读下载全文

作  者:张梅[1] 文静华[1] 

机构地区:[1]贵州财经大学信息学院,贵阳550004

出  处:《计算机工程》2016年第10期271-276,共6页Computer Engineering

基  金:国家自然科学基金资助项目"基于点云的复杂曲面物体3D建模关键技术研究"(41261094);贵州省科教青年英才培养工程基金资助项目"复杂曲面物体激光点云3D建模关键技术研究"(黔省专合字(2012)156号)

摘  要:针对无附加信息的激光点云数据,基于匹配点对衡量准则与迭代最近曲面片(ICS)算法提出一种新的配准方法。引入归一化零均值互相关系数衡量点的邻域曲率相似度,构造一一对应的初始匹配点对有效数组,利用四元素和线性最小二乘法计算初始配准参数。通过局部曲面片代替离散点,建立参与ICS算法的有效点集,并用一次近似距离代替点到对应曲面片的几何距离,建立配准的非线性最小二乘优化模型和求解策略。实例结果表明,与迭代拼接算法相比,该方法具有多视角普适性,且高效精确。Aiming at the registration of laser point cloud data with no additional information,this paper proposes a new registration method based on the measure criterion for matching point and Iterative Closest Surface(ICS) algorithm. The method introduces a new Normalized Zero-mean Cross-correlation Coefficient(NZCC) to measure curvature similarity of the neighborhood of a point. The effective array of one-to-one initial matching points is built. The initial registration parameters can be computed by using the four elements and the linear least square method. The method uses local surface instead of discrete points,the efficient point sets which involve in ICS are built, and uses one-time similar distance instead of the geometric distance from point to its corresponding surface patches, the nonlinear least square optimization model and solution strategy of registration is established. Numerical example results show that compared with the iterative stitchin- alzorithm.this method is feasible.accurate and efficient.

关 键 词:激光点云 配准 归一化零均值互相关系数 邻域曲率 迭代最近曲面片 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象