检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院 [2]北京66176部队
出 处:《价值工程》2016年第32期159-161,共3页Value Engineering
摘 要:提高故障预测准确度的方法有很多,研究先进的智能预测算法就是其中的一种。大量的先进预测算法都得到了广泛的应用,如专家系统、神经网络、支持向量机等。每种智能预测算法都有各自的优点和不足,首先介绍了常见的智能预测算法及其应用;然后重点介绍了支持向量机,主要包括其基本原理和主要问题;最后对支持向量机算法的改进方向进行了探讨。支持向量机作为智能预测算法的一种,对于提高故障预测准确度有很好的应用前景。There are many methods to improve the accurate degree of fault prediction, and the advanced intelligent prediction algorithm is one of them. A large number of advanced prediction algorithms have been widely used, such as expert systems, neural networks, support vector machines and so on. Each kind of intelligent prediction algorithm has its own advantages and disadvantages. The common intelligent prediction algorithm and its application are introduced in this paper. Then the support vector machine is introduced, mainly including its basic principles and main problems. Finally, the improvement direction of the support vector machine algorithm is discussed. As a kind of intelligent prediction algorithm, support vector machine has a good application prospect for improving the accuracy of fault prediction.
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145