∞-余纯投射模  被引量:2

∞-copure Projective Modules

在线阅读下载全文

作  者:施莉娜[1] 王芳贵[1] 熊涛[1] 

机构地区:[1]四川师范大学数学与软件科学学院,四川成都610066

出  处:《四川师范大学学报(自然科学版)》2016年第4期479-483,共5页Journal of Sichuan Normal University(Natural Science)

基  金:国家自然科学基金(11171240)

摘  要:设R是环,F∞表示平坦维数有限的左R-模类.左R-模M称为∞-余纯投射模,指对任意N∈F∞都有Ext1R(M,N)=0.证明∞-余纯投射模M是投射模当且仅当M∈F∞,同时证明当l.FFD(R)=0时,余纯投射模是∞-余纯投射模.用∞-余纯投射模刻画QF环和CPH环,证明R是QF环当且仅当每一左R-模是∞-余纯投射模,当且仅当每一N∈F∞是内射模.也证明了R是CPH环当且仅当∞-余纯投射左R-模的子模是∞-余纯投射模,当且仅当每一N∈F∞的内射维数不超过1.Let R be a ring and denote by F∞ the class of left R-modules with finite flat dimension. A left R-module M is called zo - copure projective if Ext^(M,N) =0 for all N∈ F∞. In this paper we prove that an ∞ -copure projective module M is projective if and only if M ∈F∞ , and that if 1. FFD(R) =0 then every copure projective left R-module is ∞-copure projective. Then we characterize QF and CPH rings in terms of ∞ -copure projective modules, and prove that R is QF ring if and only if every left R-module is ∞ -copure projective if and only if every N∈F∞ is injective. We also prove that R is CPH ring if and only if every submodule of an ∞ -copure pro- jective left R-module is ∞ -copure projective if and only if idR N≤1 for all N∈F∞ .

关 键 词:余纯投射模 平坦模 ∞-余纯投射模 QF环 CPH环 

分 类 号:O154[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象