深度卷积神经网络的汽车车型识别方法  被引量:26

Vehicle model recognition method based on deep convolutional neural network

在线阅读下载全文

作  者:张军[1,2] 张婷[1,2] 杨正瓴[1,2] 朱新山[1,2] 杨伯轩[1,2] 

机构地区:[1]天津大学电气与自动化工程学院,天津300072 [2]天津市过程检测与控制重点实验室,天津300072

出  处:《传感器与微系统》2016年第11期19-22,共4页Transducer and Microsystem Technologies

基  金:天津市科技计划基金资助项目(13ZXCXGX40400)

摘  要:针对现有汽车车型识别方法计算量大、提取特征复杂等问题,提出一种基于深度卷积神经网络的汽车车型识别方法。该方法借助于深度学习,对经典的卷积神经网络做出改进并得到由多个卷积层和次抽样层构成的深度卷积神经网络。根据五种车型的分类结果,表明该方法在识别率方面较传统方法有明显的提高。实验还研究了网络层数、卷积核大小、特征维数对深度卷积神经网络的性能和识别率的影响。Aiming at problems of excessive calculation and complex feature extraction of existing vehicle model recognition methods,a vehicle model recognition method is proposed based on deep convolutional neural network( DCNN). With the aid of deep learning,improvement is made on classic convolutional neural network and DCNN made of multiple convolutional layers and time sampling layers is gained. According to classification results of the five models,it shows that this method has obvious increase than traditional methods in terms of recognition rates.The experiments also study on influences of number of network layer,size of convolutional kernel,characteristic dimension on performance of DCNN and recognition rates.

关 键 词:深度学习 深度卷积神经网络 汽车车型识别 特征提取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象