检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家数字交换系统工程技术研究中心,河南郑州450002
出 处:《电子学报》2016年第7期1708-1713,共6页Acta Electronica Sinica
基 金:国家973重点基础研究发展计划(No.2012CB315901);国家863高技术研究发展计划(No.2011AA01A103)
摘 要:基于k-近邻的协同过滤推荐算法对于邻居数量k的确定过于主观,并且推荐时以k-近邻均值加权推荐不够准确.针对这两个问题,本文首先引入并改进最大最小距离聚类算法,进而设计启发式聚类模型将用户进行不规定类别数的自由聚类划分,目标用户所在类的用户为邻居用户,客观确定邻居数量;然后在推荐时定义类别相似度,针对性地建立目标用户未评分和评分项目的潜在类别关系,改进k-近邻均值加权算法.实验结果表明,该算法提高了推荐准确度(约0.035MAE).The collaborative recommendation algorithm based on kNN confirms the number of neighbours subjective-ly,and is not accurate enough to predict by kNN mean weighting calculating.To address these two problems,the maximum and minimum distance clustering algorithm was introduced and improved to design the heuristic clustering model,the model divided the users allodially without the determination of the category numbers,the neighbours of the target users were the us-ers who were in the same category with the target users;then the category similarity was defined to build the category rela-tion between the unscore and score items of the target user in prediction,and the kNN mean weighting calculating was ad-vanced based on the category similarity.The experiments show that this algorithm improves the degree of accuracy(reducing about 0. 035 MAE).
关 键 词:协同过滤 推荐算法 聚类算法 启发式聚类模型 类别相似度
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44