基于感受野学习的特征词袋模型简化算法  

Learning receptive fields for compact bag-of-feature model

在线阅读下载全文

作  者:赵骞[1] 李敏[1] 赵晓杰[1] 陈雪勇[1] ZHAO Qian LI Min ZHAO Xiaojie CHEN Xueyong(School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China)

机构地区:[1]电子科技大学计算机科学与工程学院,四川成都611731

出  处:《智能系统学报》2016年第5期663-669,共7页CAAI Transactions on Intelligent Systems

基  金:国家自然科学基金项目(61371182)

摘  要:本文研究了在图像识别任务中,感受野学习对于特征词袋模型的影响。在特征词袋模型中,一个特征的感受野主要取决于视觉词典中的视觉单词和池化过程中所使用的区域。视觉单词决定了特征的选择性,池化区域则影响特征的局部性。文中提出了一种改进的感受野学习算法,用于寻找针对具体的图像识别任务最具有效性的感受野,同时考虑到了视觉单词数量增长所带来的冗余问题。通过学习,低效、冗余的视觉单词和池化区域会被发现,并从特征词袋模型中移除,从而产生一个针对具体分类任务更精简的、更具可分性的图像表达。最后,通过实验显示了该算法的有效性,学习到的模型除了结构精简,在识别精度上相比原有方法也能有一定提升。In this work, the effects of receptive field learning on a bag-of-features pipeline were investigated for an image identification task. In a bag-of-features model, the receptive field of a feature depends mostly on use of visual words in a visual dictionary and the region used during the pooling process. Codewords make the feature respond to specific image patches and the pooling regions determine the spatial scope of the features. A modified graft feature selecting algorithm was proposed to find the most efficient receptive fields for identification purposes; this considers the redundancy problem created by simultaneously increasing visual words. Using learning receptive fields, ineffi- cient and redundant codewords and pooling regions were found and subsequently eliminated from the pooling re- gion, this made the pipeline more compact and separable for the specified classification task. The experiments show that the modified learning algorithm is effective and the learned pipeline useful for both structural simplification and improving classification accuracy compared with the baseline method.

关 键 词:视觉词袋模型 感受野学习 目标识别 图像分类 特征学习 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象