结合粒子群寻优与遗传重采样的RBPF算法  被引量:9

Rao-Blackwellized Particle Filter Algorithm Combined Particle Swarm Optimization and Genetic Re-sampling

在线阅读下载全文

作  者:林海波[1] 柯晶晶[1] 张毅[1] 

机构地区:[1]重庆邮电大学信息无障碍工程研发中心,重庆400065

出  处:《计算机工程》2016年第11期295-299,共5页Computer Engineering

基  金:国家科技部国际合作项目(2010DFA12160);重庆市科技攻关项目(CSTC;2010AA2055)

摘  要:针对Rao-Blackwellized粒子滤波器(RBPF)重采样过程存在粒子衰竭、提议分布精确度不高的问题,提出一种改进的RBPF算法。为提高RBPF算法提议分布精确性,在改进的算法中将机器人里程计信息和激光传感器采集的距离信息进行融合,在算法中引入粒子群寻优策略,通过粒子间能效吸引力来调整采样粒子集,同时对重采样中权值较小的粒子进行遗传变异操作,缓解粒子枯竭现象,提高机器人位姿估计一致性,并维持粒子集的多样性。在基于机器人操作系统和配有URG激光传感器的Pioneer3-DX机器人平台上对改进RBPF算法进行可靠性验证。实验结果表明,改进算法在兼顾粒子集多样性的同时能显著提高机器人位姿估计精确性。To solve the problem that particle degeneration exists in the re-sampling procedure and the proposed distribution is not accurate for Rao-Blackwellized Particle Filter(RBPF),an improved RBPF algorithm with Particle Swarm Optimization(PSO)Genetic Re-sampling is proposed.In order to improve the accuracy of distribution proposed by RBPF algorithm,the improved algorithm fuses the robot’s odometer information and the distance information collected by laser sensor.The Particle Swarm Optimization(PSO)policy is introduced to adjust particle collection in the sampling by the energy efficiency of particles.Meanwhile,Genetic Variation(GV)is performed on particles with smaller weights in re-sampling to relieve particle depletion,improve the consistency of robot’s pose estimation,and maintain the diversity of particles.The algorithm is verified on the Pioneer3-DX robot which is equipped with a URG laser sensor and based on the Robot Operating System (ROS ).Experimental results show that the improved RBPF algorithm can significantly improve the accuracy of robot pose estimation while ensuring the diversity of the particle set.

关 键 词:同时定位与地图构建 RAO-BLACKWELLIZED粒子滤波器 粒子群寻优 遗传变异 机器人操作系统 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象