检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学通信与信息工程学院,南京210003
出 处:《计算机工程与应用》2016年第23期181-184,219,共5页Computer Engineering and Applications
基 金:国家自然科学基金(No.61071167)
摘 要:针对传统视觉词袋(Bag Of Visual Words,BOVW)模型缺少空间信息,且不能充分表达图像所属类别共有特征的问题,提出一种基于最大频繁项集的视觉词袋表示方法。该方法在排除孤立特征点的基础上,引入环形区域划分的思想,嵌入更多的空间信息。通过对不同环的视觉单词进行频繁项挖掘得到新的视觉单词表示,能有效提高同类别图像视觉单词的相似程度,而使不同类别视觉单词的差异更为显著。通过在图像数据集COREL及Caltech-256上进行分类实验,验证了该方法的有效性和可行性。An improved Bag Of Visual Words(BOVW)representation algorithm based on maximum frequent item-sets is proposed. Isolated points are ruled out and an efficient mining of maximum frequent item-sets based on annular region division is used to find visual words occurring frequently. The proposed algorithm highlights the differential features between different categories and spatial information is contained. In comparison, traditional BOVW could not fully express image common characteristics on one category. Experimental results on COREL and Caltech-256 database demonstrate the effectiveness and feasibility of proposed algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229