检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪伟[1] 贝绍轶[1] 张兰春[1] 汪永志[1] WANG Wei BEI Shaoyi ZHANG Lanchun WANG Yongzhi(School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China)
机构地区:[1]江苏理工学院汽车与交通工程学院,江苏常州213001
出 处:《福州大学学报(自然科学版)》2016年第5期703-709,共7页Journal of Fuzhou University(Natural Science Edition)
基 金:国家自然科学基金资助项目(51305175);江苏省自然科学基金资助项目(BK2012586);江苏省"六大人才高峰"资助项目(2012-ZBZZ-023;2013-ZBZZ-039);江苏省"333工程"培养资金资助项目(BRA2015365);江苏理工学院人才引进资助项目(KYY14041)
摘 要:针对汽车状态估计过程中观测噪声时变问题,提出一种双重迭代自适应滤波算法—蚁群优化模糊逻辑扩展卡尔曼滤波(FEKF)算法.建立考虑Fiala轮胎模型的汽车二自由度非线性动力学模型,利用模糊逻辑对扩展卡尔曼滤波(EKF)算法估计过程中的观测噪声水平进行在线修正,同时引入蚁群优化算法对模糊逻辑中的输入输出隶属度函数进行优化,得到的双重迭代算法对处理强时变观测噪声水平下滤波估计过程具有很强的自适应性.最后通过建立虚拟仿真试验来验证该蚁群优化FEKF新算法的估计精度,结果显示,蚁群优化FEKF算法相比较于FEKF算法估计精度更高,鲁棒性更强.For time-varying problem of observation noise problem in vehicle state estimation,a new dual iterative adaptive filtering algorithm named the FEKF algorithm is put forward. The vehicle two freedom degrees of dynamics model based on the nonlinear Fiala tire model was established. The fuzzy logic was used on the online correction for the estimation process of the EKF algorithm. Ant colony optimization algorithm was introduced to optimize the input and output membership function in the fuzzy logic operations. So the dual iterative algorithm was obtained. The dual iterative algorithm for dealing with strong time-varying noise levels under the filtering estimation has a strong adaptability. Robustness and accuracy of the ant colony optimization FEKF algorithm compared to the FEKF algorithm is verified through the virtual experiment.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229