检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学电气工程与信息工程学院,兰州730050 [2]兰州铁路局兰州工务机械段,兰州730050
出 处:《焊接学报》2016年第11期11-14,共4页Transactions of The China Welding Institution
基 金:国家自然科学基金资助项目(50775105)
摘 要:针对钢轨闪光对焊的特点,根据GAAS80/580焊机记录的压力、电流和动端位移随时间而变化的曲线,从中提取了10个主要影响接头灰斑面积的特征参数作为BP神经网络预测模型的输入量,建立了钢轨闪光对焊接头的灰斑面积预测模型.采用粒子群算法优化了BP神经网络的权值和阈值,并利用优化后的BP网络模型对接头灰斑面积进行了预测.结果表明,提取的特征参数能较好地反映焊接接头灰斑情况,粒子群算法优化的BP神经网络预测模型能较准确地预测出焊接接头灰斑面积.According to the characteristic of the rail flash butt welding and the time-varying curve of pressure,current and displacement recorded by GAAS80/580 welding machine,ten weld quality characters which had influence on the grey-spot flaw area in the rail flash butt welded joint,were used as input data of BP network model. The particle swarm algorithm was used to optimize the weight and threshold of BP neural network model. The results showed that the characteristic parameters can well reflect the grey-spot flaw of the welding joint. In addition,the optimized BP neural network model can predict the grey-spot flaw area of welding joint accurately.
关 键 词:钢轨闪光对焊 灰斑面积 BP神经网络 预测模型 粒子群算法
分 类 号:TG115.28[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15