检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学水文水资源与水利工程科学国家重点实验室,南京210098 [2]河海大学水利水电学院,南京210098
出 处:《中国农村水利水电》2016年第12期113-116,共4页China Rural Water and Hydropower
基 金:江苏省自然科学基金(BK20131372)
摘 要:传统的BP神经网络拥有良好的逼近非线性映射能力,然而由于其自身存在收敛速度慢,容易陷入局部极小值和泛化能力差的不足,往往难以满足实际中预测精度的需要。采用卡尔曼滤波方法,将观测到的大坝位移原始值进行滤波处理,以尽可能剔除随机误差的干扰,并引入遗传算法,对神经网络的权、阈值进行优化,提高其全局搜索能力,建立了基于卡尔曼滤波的GA-BP模型。以某大坝位移预测为例,证明了此模型比传统的BP模型在预测精度上有所提高,具有一定的实际应用价值。The traditional BP neural networks approximate to the nonlinear mapping. However, it has some defects, such as slow conver-gence, local minimum and bad generalization ability. It's often difficult to meet the needs of actual forecasting accuracy. This paper uses themethod of Caiman Filer, filtering the original data of dam displacement from observed dam so as to eliminate the disturbance of random error.And the genetic algorithm is applied to optimize the weights and thresholds of neural networks to improve global search ability. GA-BP modelis established based on Calman filter. Taking a dam displacement prediction as an example, the result shows that this model has been im-proved over the traditional BP model in forecasting precision and has certain application value.
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3