深度学习在仿生眼监控系统中的应用  被引量:3

Application of Deep Learning in Bionic Eye Video Surveillance System

在线阅读下载全文

作  者:司朋举 胡伟[1] 

机构地区:[1]河南理工大学电气工程与自动化学院自动化系,河南焦作454003

出  处:《测控技术》2016年第12期139-143,共5页Measurement & Control Technology

基  金:河南省重点科技攻关项目(102102210197);河南理工大学博士基项目(B2010-23)

摘  要:在视频监控系统中,由于受到复杂的背景、环境光线变化以及设备本身性能的限制,导致目标检测算法设计难度的加大,而传统的目标检测算法通常依赖于人工选择特征,难以从海量的数据中自动学习得到一个有效的分类器。基于深度学习算法,构建了一个卷积神经网络,并利用仿生眼视频监控系统中采集的人、车图像进行训练,在此基础上设计若干实验对深度学习网络特性进行分析,证明了训练集中各个类别样本的分布以及小样本训练的情况下对深度学习的训练结果会造成较大的影响。In the video surveillance system, the difficulty of objective detection algorithm designed will marked?ly increase due to the complex background, the changes of ambient light and limitation of performance of the equipment itself. The traditional objective detection algorithm usually relies on artificial feature selection, it is hard to get an ejffective classifier from the learning of the vast amounts of data automatically. A convolutional neural network is set up based on depth learning algorithm. And a bionic eye video monitoring system is built then to collect images of people and vehicles as training. On this basis, several experiments are designed to an?alyze the characteristics of the depth learning network. It is proved that the distribution of different classes sam?ples in the training set and the small samples training can result in great influence on training result of the depth learning.

关 键 词:目标检测 卷积神经网络 深度学习 仿生眼 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象