基于单位四元数的任意旋转角度的三维坐标转换  被引量:15

Three-Dimensional Coordinate Transformation Adapted to Arbitrary Rotation Angles Based on Unit Quaternion

在线阅读下载全文

作  者:李志伟[1] 李克昭[1,2] 赵磊杰 王云凯[1] 梁晓庆 

机构地区:[1]河南理工大学测绘与国土信息工程学院,焦作市世纪大道2001号454000 [2]北斗导航应用技术河南省协同创新中心,郑州市科学大道62号450001 [3]中国建筑第七工程局交通建筑有限责任公司,郑州市城东路116号450004

出  处:《大地测量与地球动力学》2017年第1期81-85,共5页Journal of Geodesy and Geodynamics

基  金:国家自然科学基金(41202245;41272373);河南理工大学骨干教师项目(72105/090)~~

摘  要:针对三维空间坐标转换模型的参数求解问题,引入四元数构造旋转矩阵,证明了坐标转换旋转矩阵等价于四元数的正交变换,并利用单位四元数理论推导了一种直接进行空间坐标转换的算法。通过模拟数据进行仿真实验表明,该算法无需线性化,计算简便,且适用于任意旋转角度的坐标转换。In this paper, to solve the parameter of the three-dimensional spatial coordinate transformation model, quaternion is introduced to construct a rotation matrix. This paper proves that the coordinate transformation rotation matrix is equivalent to the orthogonal transformation of quaternion. Using unit quaternion theory derivates a direct algorithm for solving spatial coordinate transformations. A simulation test using analogue data and numerical examples show that the method is feasible and simple, does need not linearization, and can adapt to arbitrary rotation angle rotation transformations.

关 键 词:坐标转换 旋转矩阵 正交变换 单位四元数 

分 类 号:P226[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象