检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国工程物理研究院总体工程研究所,四川绵阳621900
出 处:《计算机测量与控制》2017年第1期204-208,220,共6页Computer Measurement &Control
摘 要:冲击信号是非线性的并且容易受到噪声污染;为研究冲击信号去噪的问题,针对经验模态分解(Empirical Mode Decomposition,EMD)去噪和小波阈值去噪方法存在的不足,提出了基于EMD的小波阈值去噪方法;单纯的EMD去噪方法会在去除高频噪声的同时压制高频的有效信息;EMD与小波阈值去噪相结合,利用连续均方误差准则确定含噪较多的高频固有模态函数(Intrinsic Mode Function,IMF),对高频IMF分量进行小波阈值去噪,以分离并保留这些分量中的有效信息,同时保持低频IMF分量不变;对模拟数据和实际冲击信号进行去噪处理,结果表明,基于EMD的小波阈值去噪方法的去噪效果优于单纯的EMD去噪方法和小波阈值去噪方法。Shock signal is easily interfered by noise. As Empirical Mode Decomposition (EMD) denoising method and wavelet threshold denoising method both have their disadvantages, a new denoising method is proposed when they are combined. When removing high-- frequency noise, EMD denoising method also suppresses effective high--frequency information. In the proposed denoising method, continuous square error rule is used to define IMF components with higher frequency, and the wavelet threshold method is applied in those components. Meanwhile the other IMF components retains the same. Firstly the performance of proposed denoising method is validated by simulation, then the proposed method is applied in shock signal. The results show that the denoising effect of the proposed method is better than both single methods.
分 类 号:O322[理学—一般力学与力学基础] TN911.7[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222