基于改进高低帽变换的钢轨裂纹红外图像增强  被引量:11

Infrared image enhancement of rail crack based on improved top-hat and bottom-hat transformation

在线阅读下载全文

作  者:顾桂梅[1] 刘丽[1] GU Gui-mei LIU li(School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Chin)

机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070

出  处:《激光与红外》2017年第1期47-52,共6页Laser & Infrared

基  金:甘肃省科技计划项目(1508KJZA059)资助

摘  要:针对钢轨裂纹红外图像对比度低、信噪比低、纹理细节模糊而难以增强目标区域的问题,借助形态学高帽变换和低帽变换,提出了多尺度高帽低帽变换的钢轨裂纹红外图像增强优化算法。首先,用改进高帽变换、低帽变换分别提取多尺度明亮、暗淡图像区域;其次对多尺度的明亮与暗淡图像区域实施最大值的提取;然后操作其最大值以构建明亮和暗淡的图像区域;最后通过加权处理,实现图像增强。实验结果表明:本文算法在抑制噪声和突出了目标图像的边缘的基础上,有效地提高图像对比度,可应用于红外图像增强的场合,为后续图像信息处理奠定了必要的基础。As the infrared image of rail crack has low contrast, low signal-noise ratio, fuzzy texture detail and is diffi- cult to enhance the target region, an infrared image enhancement optimization algorithm of rail crack based on the multi-scale top-hat and bottom-hat transformation is proposed. First, an improved top-hat transform is used to extract multi-scale bright image regions, and multi-scale dim image regions is extracted using an improved bottom-hat trans- form;then the bright and dark areas of the image are established through the maximum value extracted from the muhi- scale bright and dim image regions;finally, image enhancement is realized through weighted processing. Experimental results indicate that the proposed algorithm can suppress the noise and highlight image edge of the target, meanwhile effectively improve the image contrast ,which lays a necessary foundation for the further image processing.

关 键 词:钢轨裂纹 红外图像 图像增强 高帽变换 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] U213.4[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象