一种邻域嵌入超分辨率算法  被引量:2

A Super-resolution Algorithm through Neighbor Embedding

在线阅读下载全文

作  者:赵阳[1] 李国林[2] 谢翔[1] 麦宋平[1] 

机构地区:[1]清华大学微电子系,北京100084 [2]清华大学电子系,北京100084

出  处:《微电子学与计算机》2017年第2期10-14,共5页Microelectronics & Computer

基  金:国家自然科学基金项目61373073);深圳市科技项目(JCYJ20150331151358146)

摘  要:邻域嵌入算法是一种基于学习的超分辨率算法,但是存在图像特征计算复杂和分类搜索难度大的问题.本文提出了一种基于二阶梯度比例特征的邻域嵌入超分辨率算法,其图像特征简单,分类和搜索复杂度低,同时图像库存储量小,适合于硬件实现.实验结果表明,与传统超分辨率算法相比,本文算法重建的高分辨率图像具有更丰富的纹理和更锐利的边缘,具有更好的主客观质量.Super-resolution algorithm through neighbor embedding (NE) is based on learning. But the algorithm have the problems that the feature of image is complex and difficult to elassify and search. A super-resolution algorithm through neighbor embedding by the feature based on the ratio of multiple directions of two-step grade is proposed. The computational complexity of the feature is low, and classifying and searching the feature is simple. Meanwhile the memory space of the algorithm is small. The super resolution algorithm is easy to implement on hardware. The experiment results shows that, high resolution images reconstructed by the algorithm have a great improvement than other state-of-the-art SIR algorithms, also subjectively recover more high frequency detail and sharp edge. The recover images have better subjective and objective quality.

关 键 词:图像处理 超分辨率 邻域嵌入 硬件 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象