检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张家旭 李静[1] ZHANG Jia-xu LI Jing(State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China R & D Center, China FAW Group Corporation, Changchun 130011, China)
机构地区:[1]吉林大学汽车仿真与控制国家重点实验室,长春130022 [2]中国第一汽车集团技术中心,长春130011
出 处:《吉林大学学报(工学版)》2017年第1期15-20,共6页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(51275206)
摘 要:提出一种基于粒子群优化(PSO)算法和修正的Gauss-Newton算法的混合优化方法,对纯纵滑和纯侧偏工况下UniTire轮胎模型的特征参数进行辨识。为充分发挥两个算法的优点,首先,利用粒子群优化算法的全局区域的搜索优势辨识出UniTire轮胎模型的特征参数近似解,然后,利用修正的Gauss-Newton算法局部搜索优势在近似解邻近区域获得UniTire轮胎模型的特征参数的最优解。最后,对辨识结果进行残差分析,结果表明:用辨识数据参数化的UniTire轮胎模型具有较高的精度,可满足构建车辆底盘电控系统硬件在环仿真测试环境的需求。A hybrid optimization method is proposed based Particle Swarm Optimization(PSO)algorithm and modified Gauss-Newton(S-N)algorithm,which is used for characteristic parameter identification of UniTire model under pure longitudinal slip and pure cornering conditions.Taking the full advantages of the two algorithms,the approximate solutions are identified first using the PSO algorithm,which is superior in global search;then,the optimal solutions of the parameters are obtained in the neighboring region of the approximate solutions by using the modified G-N algorithm,which is superior in local search.The results of residual analysis of the identified parameters show that the parameterized UniTire model with the identified results has high accuracy,and can meet the requirements to establish hardware in the loop simulation test environment for electric control unit of the vehicle chassis.
关 键 词:车辆工程 粒子群优化算法 Gauss-Newton算法 UniTire轮胎模型 参数辨识
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117