检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟翔飞[1] 李鑫[1] MENG Xiang-fei LI Xin(School of Electrical and Automation Engineering, Changshu Institute of Technology, Changshu 215500, China)
机构地区:[1]常熟理工学院电气与自动化工程学院,常熟215500
出 处:《中国惯性技术学报》2016年第6期730-735,共6页Journal of Chinese Inertial Technology
基 金:江苏省产学研联合创新资金(BY2014075);江苏高校品牌专业建设工程资助项目(PPZY2015C215)
摘 要:针对传统基于视速度双矢量粗对准中,由于传感器随机噪声的影响,存在对准精度差,收敛速度慢的缺点,提出了一种新型自适应Kalman滤波的参数识别粗对准方法。该方法通过对视速度运动进行建模,设计采用自适应Kalman滤波对模型参数进行参数识别,从而有效地消除视运动中的随机噪声,提高粗对准的精度和收敛速度。由于自适应滤波的特点,新方法不需要对传感器误差进行统计,使其在实际系统中具有更加广泛的应用价值。针对双矢量粗对准的计算特点,设计了一种矢量重构算法,从而尽可能地规避双矢量共线性问题,加快了粗对准的收敛过程。仿真与转台实验表明,与传统方法对比,新方法在相同的对准时间内具有更高的对准精度,在相同的对准精度下,具有更高的收敛速度。转台实验的最终对准精度为-0.1391°,标准差为0.012°。Traditional dual-vector coarse alignment with apparent velocity has the problems of poor alignment precision and slow convergence rate due to the influence of random noises on inertial sensors.To solve this problem, a new dual-vector coarse alignment method is designed, which uses a new adaptive Kalman filter to estimate the parameters in an apparent velocity model without using the accurate covariance of the measurement noises.Meanwhile, a reconstructed algorithm with recognized parameters is adopted for the dual-vector, which can avoid the collinearity of the dual-vector.Analysis and simulation indicate that, by using this method, the random noises in the measured apparent velocity can be effectively eliminated compared with the traditional dual-vector coarse alignment.Simulation and turntable experiments show that, compared with traditional methods, the proposed method for the coarse alignment can acquire more accurate alignment results with the same alignment time, and can improve the convergence rate with the same alignment accuracy.The turntable tests by the new method show that the yaw error is-0.1391° and the standard deviation is 0.012°.
关 键 词:捷联惯导系统 粗对准 改良Kalman滤波 参数辨识 双矢量姿态确定
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145