检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张吉超[1] 张文[2] ZHANG Jichao ZHANG Wen(School of Science, Hubei University of Technology, Wuhan 430068, China School of Mathematical Sciences, Xiamen University, Xiamen 361005, China)
机构地区:[1]湖北工业大学理学院,湖北武汉430068 [2]厦门大学数学科学学院,福建厦门361005
出 处:《大连理工大学学报》2017年第1期100-104,共5页Journal of Dalian University of Technology
基 金:国家自然科学基金资助项目(11471270);福建省自然科学基金资助项目(2015J01022);厦门大学校长基金资助项目(20720160010)
摘 要:主要研究Banach空间的不动点性质,并给出一种全新的证明方法.首先利用超幂方法证明范数一致G光滑在凸集本身以及它的超幂上是相等的,然后利用反证法证明凸集在范数一致G光滑下对非扩张映射具有不动点性质,最后证明了每个强超弱紧生成的Banach空间在再赋范意义下满足每个弱紧凸集具有超不动点性质.The fixed-point property of Banach space is studied and a new proof method is given.Firstly,the ultraproduct method is used to prove that the uniformly G-differentiable norms are equivalent under convex sets and its ultraproduct.Then,by means of counter-proof,it is proven that convex sets have the fixed-point property for nonexpansive mappings under the uniformly Gdifferentiable norm sense.Finally,it is shown that every strongly super weakly compact generated Banach space can be renormed so that every weakly compact convex set has super fixed-point property.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.89.143