离散系统运动方程的Galerkin有限元EEP法自适应求解  被引量:3

An EEP Adaptive Strategy of the Galerkin FEM for Dynamic Equations of Discrete Systems

在线阅读下载全文

作  者:邢沁妍[1] 杨杏[1] 袁驷[1] 

机构地区:[1]清华大学土木工程系土木工程安全与耐久教育部重点实验室,北京100084

出  处:《应用数学和力学》2017年第2期133-143,共11页Applied Mathematics and Mechanics

基  金:国家自然科学基金(51508305;51378293;51078199)~~

摘  要:对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误差,并自动细分网格,目前已对诸类以空间坐标为自变量的边值问题取得成功.对离散系统运动方程建立弱型Galerkin有限元解,引入基于EEP法的自适应求解策略,在时间域上自动划分网格,最终得到所求时域内任一时刻均满足给定误差限的动位移解,进而建立了一种时间域上的新型自适应求解算法.For the solution of structural dynamic equations-generally the accuracy of results and the efficiency of computation both depend on the selection of the time step lengths-which makes the key difficulty for efficient solution of time-dependent problems.With the element energy projection (EEP) super-convergent solution computed at the post-processing stage of the finite element method (FEM) to replace the unknown true solution and then to estimate the error of the conventional FEM solutionthe so-called EEP adaptive method can automatically refine the solution mesh and has achieved success in various boundary-value problems with spatial coordinates as the arguments.Based on the Galerkin FEM solution of the weak form-the EEP self-adaptive strategy was introduced and applied to the dynamic equations of discrete systems.As a result-an adaptive mesh was automatically produced in the time domain-and a dynamic displacement solution satisfying the pre-specified error tolerance at any moment was obtained-which leads to a new adaptive computation approach for time-dependent problems.

关 键 词:离散系统 运动方程 GALERKIN有限元 自适应求解 EEP法 

分 类 号:O242.21[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象