检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学土木工程系土木工程安全与耐久教育部重点实验室,北京100084
出 处:《应用数学和力学》2017年第2期133-143,共11页Applied Mathematics and Mechanics
基 金:国家自然科学基金(51508305;51378293;51078199)~~
摘 要:对于结构动力分析中的离散系统运动方程,现有算法的计算精度和效率均依赖于时间步长的选取,这是时间域问题求解的难点.基于EEP(element energy projection)超收敛计算的自适应有限元法,以EEP超收敛解代替未知真解,估计常规有限元解的误差,并自动细分网格,目前已对诸类以空间坐标为自变量的边值问题取得成功.对离散系统运动方程建立弱型Galerkin有限元解,引入基于EEP法的自适应求解策略,在时间域上自动划分网格,最终得到所求时域内任一时刻均满足给定误差限的动位移解,进而建立了一种时间域上的新型自适应求解算法.For the solution of structural dynamic equations-generally the accuracy of results and the efficiency of computation both depend on the selection of the time step lengths-which makes the key difficulty for efficient solution of time-dependent problems.With the element energy projection (EEP) super-convergent solution computed at the post-processing stage of the finite element method (FEM) to replace the unknown true solution and then to estimate the error of the conventional FEM solutionthe so-called EEP adaptive method can automatically refine the solution mesh and has achieved success in various boundary-value problems with spatial coordinates as the arguments.Based on the Galerkin FEM solution of the weak form-the EEP self-adaptive strategy was introduced and applied to the dynamic equations of discrete systems.As a result-an adaptive mesh was automatically produced in the time domain-and a dynamic displacement solution satisfying the pre-specified error tolerance at any moment was obtained-which leads to a new adaptive computation approach for time-dependent problems.
关 键 词:离散系统 运动方程 GALERKIN有限元 自适应求解 EEP法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229