检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《杭州师范大学学报(自然科学版)》2017年第1期94-102,共9页Journal of Hangzhou Normal University(Natural Science Edition)
摘 要:研究了带投资的双险种更新风险模型中的破产概率.该模型中允许保险公司将其部分盈余投资于满足几何布朗运动的Black-Scholes型资本市场,对此模型假定同一险种索赔额是两两拟渐近独立的,根据Ito公式得到公司盈余过程的表达式,基于该模型分析了当索赔额满足D族分布时破产概率渐近关系式,并由D族分布推出C族分布下破产概率的渐近关系式.The ruin probability in the two-dimensional renewal risk model is studied, in which the insurance company is allowed to invest a part of wealth in a Black-Scholes market which is described by a geometric Brownian motion. The expression of the wealth process by ItO formula is given, in the presence of claims with tails of regular varition and pairwise quasi-asymptotic dependence structure for the same type of this model. The asymptotic formula of the ruin probability is analyzed when the claim amount is satisfied with the D distribution, and through asymptotic relationship of ruin probability under D distribution, the asymptotic formula of the ruin probability with G' distribution is got.
关 键 词:破产概率 两两拟渐进独立 D族分布 C族分布 双险种风险模型
分 类 号:O211.9[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.168.130