基于差分隐私的决策树发布技术研究  被引量:3

Research on Differential Privaty for Decision Tree Release Technology

在线阅读下载全文

作  者:陈杨[1] 于守健[1] CHEN Yang YU Shou-jian(College of Computer Science and Technology, Donghua University, Shanghai 201620, China)

机构地区:[1]东华大学计算机科学与技术学院,上海201620

出  处:《计算机与现代化》2017年第3期59-64,共6页Computer and Modernization

摘  要:近年来,大数据所带来的隐私泄露问题日趋严重,如何在保护数据隐私的同时保留足够的信息进行数据分析是研究者面临的重要挑战。针对数据分析过程中可能产生的隐私泄露问题,提出一种基于差分隐私的决策树发布法,该算法是基于非交互模型,利用指数机制保证细分属性的选择满足差分隐私保护,根据数据集的特点自适应分配隐私预算,相比已有的算法隐私预算分配更合理,决策树的分类准确性更高。实验结果验证了本算法的优越性。Privacy disclosure issue is becoming more and more serious due to big data. We proposed a differential private general- ization data publishing algorithm for decision tree. The algorithm is based on the non-interactive model, in the process of attribute segmentation by combining similar branch to reduce the overall noise, and keeps more of original information, so it can improve the accuracy of classification. According to the need of exponential mechanism, adaptive allocation privacy budget, compared with the previous algorithms, under the condition of the same privacy budget it can make the data more differentiated, and deci- sion tree classification accuracy is higher. The experimental results also prove the validity and superiority of this algorithm.

关 键 词:泛化 差分隐私 决策树 数据发布 隐私保护 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象