检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李蕊[1,2] 殷俊锋[1] LI Rui YIN Junfeng(School of Mathematical Sciences, Tongii University, Shanghai 200092, China College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China)
机构地区:[1]同济大学数学科学学院,上海200092 [2]嘉兴学院数理与信息工程学院,浙江嘉兴314001
出 处:《同济大学学报(自然科学版)》2017年第2期296-301,共6页Journal of Tongji University:Natural Science
基 金:国家自然科学基金(No:11271289)
摘 要:考虑两步模系矩阵分裂算法求解弱非线性互补问题,理论分析给出了当系数矩阵为正定矩阵或H+-矩阵时迭代法的收敛性质和两步模系超松弛迭代法的参数选取范围.数值实验表明,两步模系矩阵分裂算法是行之有效的,并在迭代步数和迭代时间上均优于模系矩阵分裂算法.Two-step modulus-based matrix splitting algorithms are proposed to solve weakly nonlinear complementarity problems. Convergence theory is established when the system matrix is either positive definite or an H+- matrix. Moreover, the choice of the parameters for two-step modulus-based successive overrelaxation methods is also discussed. Numerical experiments show that the proposed methods are efficient and better than the modulus-based matrix splitting methods in aspects of iteration steps and CPU time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222