检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学管理学院,陕西西安710055
出 处:《科技广场》2017年第1期95-99,共5页Science Mosaic
摘 要:推荐系统已经成为人们在网上寻找自己所需信息的常用工具之一。基于社交网络的推荐方法能够解决传统推荐算法存在的问题,例如新用户的冷启动问题。本文提出了一种基于矩阵分解的并且可以应用于社交网络的新模型。该模型将信任传播机制融入模型中,并使用Epinions.com数据集进行实验。试验结果表明,基于社交网络的新模型在推荐准确度方面相较于传统模型,针对评分较少的新用户所存在的冷启动问题有较好的解决。The recommendation system has become one of the most common tools for people to find what they need online. The recommendation method based on the social network can solve the problems of traditional recommendation algorithm, such as new user's cold start. In this paper, we propose a new model based on matrix decomposition which can be applied to social networks. In the new model, we incorporate the trust propagation mechanism into the model and experiment with the Epinions.com dataset. The experimental results show that the new model based on social network has a better solution to the cold start problem of new users with fewer scores due to the traditional model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.58.166