检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学电子信息与控制工程学院,北京100124
出 处:《计算机应用与软件》2017年第4期249-254,321,共7页Computer Applications and Software
摘 要:为了提高图像检索的效率,提出一种基于视觉词袋模型的图像检索方法。一方面在图像局部特征提取算法中,使用添加渐变信息的盒子滤波器构造尺度空间,以保留图像更多的细节信息,另一方面在特征表达时仅计算一次特征点圆形邻域内的Haar小波响应,避免了Haar小波响应的重复计算,并在保证描述子旋转不变性的同时做降维处理。同时,以改进k-means对特征库聚类构建加权的视觉词典,基于概率计算的方式选取k-means初始聚类中心,降低了传统k-means聚类效果对初始聚类中心选择的敏感性。实验结果表明该方法比传统方法具有更高的效率,特征提取速度提高48%左右,查准率提高2%以上。In order to improve the efficiency of image retrieval, an image retrieval method based on BoVW (Bag of Visual Words) model is proposed. On the one hand, in image local feature extraction algorithm, we use box filter with gradient information to form scale space, to retain more image details information. On the other hand, only the Haar wavelet response in the circular neighborhood of the feature point is calculated in the feature expression, which avoids the repeated calculation of the Haar wavelet response and reduces the dimension while guarantee rotational invariance. At the same time, using improved k-means clustering method to construct a weighted visual dictionary, the k-means initial clustering center is selected based on probabilistic calculation method, which reduces the sensitivity of the traditional k-means clustering to the initial clustering center selection. The experimental results show that the proposed method is more efficient than the traditional method, feature extraction speed is increased by about 48% and the precision is improved by more than 2%.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112