检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:占鹏飞[1] 吕鑫[1] 毛莺池[1] 徐淑芳[1] 王龙宝[1] 马鸿旭[1]
出 处:《计算机科学》2017年第5期268-271,275,共5页Computer Science
基 金:水利部公益性行业科研专项经费项目(201501007);NSFC-广东联合基金重点项目(U1301252);国家科技支撑计划(2013BAB06B04;HNKJ13-H17-04);国家自然科学基金面上项目(61272543)资助
摘 要:卡尔曼滤波模型被广泛运用于大坝的变形预测,然而其参数的识别,尤其是状态和观测噪音协方差矩阵的识别,主要来源于工程经验和领域专家知识。因此提出一种自学习的参数识别方法,该方法基于历史数据,结合Monte Carlo和拒绝采样算法获取卡尔曼滤波参数。具体地,从训练样本中挑选出与真实值最接近的实测值对状态噪音进行估计,并通过计算它与总体误差的差值来确定观测噪音。实验表明,相比已有的同类方法,该方法的准确性更高,更适用于大坝变形预测。Kalman filter is widely applied to dam deformation prediction. However, the identification of parameters to the model, especially the state and observation noise eovariance matrices, is derived mostly from the experience of engi- neering or expert knowledge. Therefore, a self-learning method was proposed for parameter identifying, in which the pa- rameters of Kalman filter are determined by the combination of Monte Carlo and rejection sampling algorithm from his- tory data. More precisely, the state noise sorted out from training ones is evaluated by samples, whose observations ap- proximate actual value completely, and the observation noise is determined by calculating the difference of the aforemen- tioned noise and overall error. The experiment result shows that the proposed method is more accurate than other con- gener ones, and it's more applicable to dam deformation prediction.
关 键 词:MONTE Carlo 拒绝采样 卡尔曼滤波 参数自学习 大坝变形预测
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.137.108