Rapid gene expression change in a novel synthesized allopolyploid population of cultivated peanut×Arachis doigoi cross by cDNA-SCoT and HFO-TAG technique  被引量:3

Rapid gene expression change in a novel synthesized allopolyploid population of cultivated peanut×Arachis doigoi cross by cDNA-SCoT and HFO-TAG technique

在线阅读下载全文

作  者:HE Liang-qiong TANG Rong-hua JIANG Jing XIONG Fa-qian HUANG Zhi-peng WU Hai-ning GAO Zhong-kui ZHONG Rui-chun HE Xin-hua HAN Zhu-qiang 

机构地区:[1]Cash Crops Research Institute/Guangxi Crop Genetic Improvement and Biotechnology Laboratory,Guangxi Academy of Agricultural Sciences,Nanning 530007,P.R.China [2]Guangxi University,Nanning 530004,P.R.China

出  处:《Journal of Integrative Agriculture》2017年第5期1093-1102,共10页农业科学学报(英文版)

基  金:supported by the Guangxi Academy of Agricultural Sciences Foundation,China(2015JZ08 and 2015YT57);the Guangxi Sciences Foundation,China(2011GXNSFA018079);the Modern Agro-industry Technology Research System,China(CARS-14-19);the National Natural Science Foundation of China(31160294 and 31240059)

摘  要:AIIopolyploidy has played an important role in plant evolution and heterosis. Recent studies indicate that the process of wide hybridization and (or) polyploidization may induce rapid and extensive genetic and epigenetic changes in some plant species. To better understand the allopolyploidy evolutionism and the genetic mechanism of Arachis interspecific hybridization, this study was conducted to monitor the gene expression variation by cDNA start codon targeted polymorphism (cDNA-SCoT) and cDNA high-frequency oligonucleotide-targeting active gene (cDNA-HFO-TAG) techniques, from the hybrids (F1) and newly synthesized allopolyploid generations (S0-$3) between tetraploid cultivated peanut Zhongkaihua 4 with diploid wild one Arachis doigoi. Rapid and considerable gene expression variations began as early as in the FI hybrid or immediately after chromosome doubling. Three types of gene expression changes were observed, including complete silence (gene from progenitors was not expressed in all progenies), incomplete silence (gene expressed only in some progenies) and new genes activation. Those silent genes mainly involved in RNA transcription, metabolism, disease resistance, signal transduction and unknown functions. The activated genes with known function were almost retroelements by cDNA-SCoT technique and all metabolisms by cDNA-HFO-TAG. These findings indicated that interspecific hybridization and ploidy change affected gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation, and some obtained transcripts derived fragments (TDFs) probably could be used in the research of molecular mechanism of Arachis allopolyploidization which contribute to thwe genetic diploidization of newly formed allopolyploids. Our research is valuable for understanding of peanut evolution and improving the utilization of putative and beneficial genes from the wild peanut.AIIopolyploidy has played an important role in plant evolution and heterosis. Recent studies indicate that the process of wide hybridization and (or) polyploidization may induce rapid and extensive genetic and epigenetic changes in some plant species. To better understand the allopolyploidy evolutionism and the genetic mechanism of Arachis interspecific hybridization, this study was conducted to monitor the gene expression variation by cDNA start codon targeted polymorphism (cDNA-SCoT) and cDNA high-frequency oligonucleotide-targeting active gene (cDNA-HFO-TAG) techniques, from the hybrids (F1) and newly synthesized allopolyploid generations (S0-$3) between tetraploid cultivated peanut Zhongkaihua 4 with diploid wild one Arachis doigoi. Rapid and considerable gene expression variations began as early as in the FI hybrid or immediately after chromosome doubling. Three types of gene expression changes were observed, including complete silence (gene from progenitors was not expressed in all progenies), incomplete silence (gene expressed only in some progenies) and new genes activation. Those silent genes mainly involved in RNA transcription, metabolism, disease resistance, signal transduction and unknown functions. The activated genes with known function were almost retroelements by cDNA-SCoT technique and all metabolisms by cDNA-HFO-TAG. These findings indicated that interspecific hybridization and ploidy change affected gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation, and some obtained transcripts derived fragments (TDFs) probably could be used in the research of molecular mechanism of Arachis allopolyploidization which contribute to thwe genetic diploidization of newly formed allopolyploids. Our research is valuable for understanding of peanut evolution and improving the utilization of putative and beneficial genes from the wild peanut.

关 键 词:PEANUT ALLOPOLYPLOIDY gene expression start codon-targeted polymorphism high-frequency oligonucleotide-targeting active gene 

分 类 号:S565.2[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象