检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张经纬[1] 贡亮[1] 黄亦翔[1] 刘成良[1] 龚霁程 潘俊松[2]
机构地区:[1]上海交通大学机械与动力工程学院,上海200240 [2]上海交通大学农业与生物学院,上海200240
出 处:《农机化研究》2017年第10期163-168,共6页Journal of Agricultural Mechanization Research
基 金:"十二五"国家科技支撑计划项目(2014BAD08B01);上海交通大学"Agri+X"基金项目(Agri-X2015002)
摘 要:针对黄瓜表型测量中图像识别问题,为解决黄瓜种子腔与果肉图像灰度差别不大情况下的分割难题,提出了基于随机森林算法(Random Forest,RF)的黄瓜种子腔图像分割方法。首先,通过颜色空间变换,提取样本在RGB、HSV、YCb Cr模型下的9个颜色分量;接着,基于灰度共生矩阵提取样本的能量、熵、对比度、相关性的均值与标准差等8个纹理特征。结合纹理与颜色特征,运用随机森林算法构建像素分类器,实现了种子腔的粗分割。为了提高分割质量,对粗分割的图像进行形态学处理得到最终分割图像。最后,与K-均值聚类(Kmeans)算法、支持向量机(Support Vector Machine,SVM)算法做对比。实验表明:随机森林分割算法正确识别率高达95%,错误识别率在10%之内,处理时间1.6 s左右,分割质量上优于其它两种算法。For identifying regions of interest in the measurement of cucumber phenotype, the segmentation of cucumber seed cavity is difficult because the gray scale difference between cucumber seed cavity and flesh is not obvious. A method based on the Random Forest ( RF) algorithm for image segmentation of cucumber seed cavity was proposed. First, 9 color features were taken from 3 color spaces including RGB, HSV and YCbCr. Then 8 texture features which are com-posed of means and standard deviations of angular second moment, entropy, contrast and correlation based on Gray-level Co-occurrence Matrix were extracted. All color and texture features were brought into the training module of Random Forest to make an image classifier which can be used for coarse segmentation of cucumber seed cavity. Morphological pro-cessing was introduced to improve the segmentation quality. Finally, the method mentioned above was compared with the K-means clustering ( K-means) algorithm and the Support Vector Machine ( SVM) algorithm. The test results show that the rate of right identification is up to 95% or more, the rate of false identification is less than 10% and the recognition time is about 1. 6 s by using the Random Forest algorithm for cucumber seed cavity segmentation, which is superior to the other two algorithms.
关 键 词:黄瓜 育种 图像分割 随机森林 K-均值聚类 支持向量机
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] S603.6[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3