三次样条插值法计算药物在不同温度下的溶解度  被引量:1

Calculating drug solubility at different temperature by cubic spline interpolation method

在线阅读下载全文

作  者:查岭[1] 赵庆辉[1] 王英利 

机构地区:[1]周口市中心医院药学部,河南周口466000 [2]上海现代哈森(商丘)药业有限公司,河南商丘476000

出  处:《安徽医药》2017年第5期816-820,共5页Anhui Medical and Pharmaceutical Journal

摘  要:目的药物溶解度是药物的一个重要性质,该文拟用插值法从有限温度下的溶解度计算任意温度下的溶解度。方法选择20种电解质作为模型药物,从文献中查得它们在不同温度下的溶解度,并分别用三次样条插值法和幂函数展开法从这些模型药物在0、10、30、40、60和80℃下溶解度计算得到它们在20℃下的溶解度,并与文献值作比较。结果可用这两种方法计算药物在任意温度下的溶解度,且三次样条插值法计算优于幂展开法。不仅如此,插值法也可计算药物的其它一些重要性质,如不同温度下的比热容、临界相对湿度等。结论三次样条插值法在计算药物性质中可广泛应用。Objective To calculate the solubility at any temperature by cubic spline interpolation method according to the solubility at several temperatures. Methods Twenty drugs are selected as a model drugs and their solubility at different temperature is found from literature. The solubility of selected drugs at 20 is calculated by cubic spline interpolation method and Taylor series method according to the solubility at 0,10,30,40,60 and 80 , which is compared with the solubility from literature. Results The result shows the solu-bility at any temperature can be calculated by the two methods and the calculated solubility at 20 by cubic spline interpolation meth-od, which is better than that from Taylor series method. Furthermore,the other property of drugs,such the specific heat and critical rela-tive humidity at different temperature can be calculated by cubic spline interpolation method. Conclusion The interpolation method can widely be used in the calculation of drug property.

关 键 词:三次样条插值 幂函数展开 温度 溶解度 

分 类 号:R914[医药卫生—药物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象