检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李苗硕 谷丰收[2] 王铁[1] 李国兴[1,2] 王永红 鹿星晨
机构地区:[1]太原理工大学机械工程学院车辆工程系,山西太原030024 [2]哈德斯菲尔德大学工程与效能中心 [3]大运汽车股份有限公司,山西运城044000
出 处:《中国测试》2017年第5期138-144,共7页China Measurement & Test
摘 要:悬架系统直接关系到车辆的安全性、平顺性和操稳性,由于路面激励是随机激励,对悬架系统的状态监测一直是研究难点。该文提出一种新的悬架状态监测方法,利用仅需输出的平均相关随机子空间法识别模态参数,再通过模态参数变化对故障造成的悬架刚度变化进行监测。首先对平均相关随机子空间法在较高阻尼比下的识别效果进行分析,验证算法在悬架监测中的可行性;然后基于车辆七自由度振动模型对模态参数进行仿真识别,分析路面激励及噪声对识别结果的影响,并提出基于振型和模态能量的监测方法;最后设计利用9轴MEMS惯性传感器的试验方案对正常及故障状态进行监测,验证方法的可信度。The performance of suspension system is directly related to the vehicle safety, riding comfort and handling stability. However, the road surface is a kind of random excitation, which places many difficulties in research on the condition monitoring of suspension system. Based on the average correlation signal based stochastic subspace identification(ASC-SSI), a novel method was presented to identify the modal parameters of suspension system in this article. The average correlation signal based stochastic subspace identification method was used to identify model parameters and the changes in suspension stiffness caused by changes of model parameters are monitored. Firstly, the validation of this algorithm was confirmed in a high damping ratio situation.Then, based on an established seven degree of freedom dynamic model, the modal parameters of suspension system were identified to analyze the influences of excitation from road roughness and strong noise to identification results, and then a monitoring method based on mode shape and modal energy was proposed.Finally, a test scheme using 9-axis MEMS inertial sensor was designed to monitor the normal and faulty condition and verify the validity and feasibility of the proposed method.
关 键 词:模态参数识别 悬架系统 平均相关随机子空间法 状态监测 MEMS
分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.0.98